3.5.12 \(\int \frac {(a^2+2 a b x^2+b^2 x^4)^{3/2}}{x^{16}} \, dx\)

Optimal. Leaf size=167 \[ -\frac {3 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{13 x^{13} \left (a+b x^2\right )}-\frac {3 a b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}{11 x^{11} \left (a+b x^2\right )}-\frac {b^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{9 x^9 \left (a+b x^2\right )}-\frac {a^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{15 x^{15} \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1112, 270} \begin {gather*} -\frac {a^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{15 x^{15} \left (a+b x^2\right )}-\frac {3 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{13 x^{13} \left (a+b x^2\right )}-\frac {3 a b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}{11 x^{11} \left (a+b x^2\right )}-\frac {b^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{9 x^9 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^16,x]

[Out]

-(a^3*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(15*x^15*(a + b*x^2)) - (3*a^2*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(13*x
^13*(a + b*x^2)) - (3*a*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(11*x^11*(a + b*x^2)) - (b^3*Sqrt[a^2 + 2*a*b*x^2
 + b^2*x^4])/(9*x^9*(a + b*x^2))

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}}{x^{16}} \, dx &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \frac {\left (a b+b^2 x^2\right )^3}{x^{16}} \, dx}{b^2 \left (a b+b^2 x^2\right )}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \left (\frac {a^3 b^3}{x^{16}}+\frac {3 a^2 b^4}{x^{14}}+\frac {3 a b^5}{x^{12}}+\frac {b^6}{x^{10}}\right ) \, dx}{b^2 \left (a b+b^2 x^2\right )}\\ &=-\frac {a^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{15 x^{15} \left (a+b x^2\right )}-\frac {3 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{13 x^{13} \left (a+b x^2\right )}-\frac {3 a b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}{11 x^{11} \left (a+b x^2\right )}-\frac {b^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{9 x^9 \left (a+b x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 61, normalized size = 0.37 \begin {gather*} -\frac {\sqrt {\left (a+b x^2\right )^2} \left (429 a^3+1485 a^2 b x^2+1755 a b^2 x^4+715 b^3 x^6\right )}{6435 x^{15} \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^16,x]

[Out]

-1/6435*(Sqrt[(a + b*x^2)^2]*(429*a^3 + 1485*a^2*b*x^2 + 1755*a*b^2*x^4 + 715*b^3*x^6))/(x^15*(a + b*x^2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 21.97, size = 61, normalized size = 0.37 \begin {gather*} \frac {\sqrt {\left (a+b x^2\right )^2} \left (-429 a^3-1485 a^2 b x^2-1755 a b^2 x^4-715 b^3 x^6\right )}{6435 x^{15} \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^16,x]

[Out]

(Sqrt[(a + b*x^2)^2]*(-429*a^3 - 1485*a^2*b*x^2 - 1755*a*b^2*x^4 - 715*b^3*x^6))/(6435*x^15*(a + b*x^2))

________________________________________________________________________________________

fricas [A]  time = 1.20, size = 37, normalized size = 0.22 \begin {gather*} -\frac {715 \, b^{3} x^{6} + 1755 \, a b^{2} x^{4} + 1485 \, a^{2} b x^{2} + 429 \, a^{3}}{6435 \, x^{15}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^16,x, algorithm="fricas")

[Out]

-1/6435*(715*b^3*x^6 + 1755*a*b^2*x^4 + 1485*a^2*b*x^2 + 429*a^3)/x^15

________________________________________________________________________________________

giac [A]  time = 0.21, size = 69, normalized size = 0.41 \begin {gather*} -\frac {715 \, b^{3} x^{6} \mathrm {sgn}\left (b x^{2} + a\right ) + 1755 \, a b^{2} x^{4} \mathrm {sgn}\left (b x^{2} + a\right ) + 1485 \, a^{2} b x^{2} \mathrm {sgn}\left (b x^{2} + a\right ) + 429 \, a^{3} \mathrm {sgn}\left (b x^{2} + a\right )}{6435 \, x^{15}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^16,x, algorithm="giac")

[Out]

-1/6435*(715*b^3*x^6*sgn(b*x^2 + a) + 1755*a*b^2*x^4*sgn(b*x^2 + a) + 1485*a^2*b*x^2*sgn(b*x^2 + a) + 429*a^3*
sgn(b*x^2 + a))/x^15

________________________________________________________________________________________

maple [A]  time = 0.01, size = 58, normalized size = 0.35 \begin {gather*} -\frac {\left (715 b^{3} x^{6}+1755 a \,b^{2} x^{4}+1485 a^{2} b \,x^{2}+429 a^{3}\right ) \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {3}{2}}}{6435 \left (b \,x^{2}+a \right )^{3} x^{15}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^16,x)

[Out]

-1/6435*(715*b^3*x^6+1755*a*b^2*x^4+1485*a^2*b*x^2+429*a^3)*((b*x^2+a)^2)^(3/2)/x^15/(b*x^2+a)^3

________________________________________________________________________________________

maxima [A]  time = 1.29, size = 35, normalized size = 0.21 \begin {gather*} -\frac {b^{3}}{9 \, x^{9}} - \frac {3 \, a b^{2}}{11 \, x^{11}} - \frac {3 \, a^{2} b}{13 \, x^{13}} - \frac {a^{3}}{15 \, x^{15}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^16,x, algorithm="maxima")

[Out]

-1/9*b^3/x^9 - 3/11*a*b^2/x^11 - 3/13*a^2*b/x^13 - 1/15*a^3/x^15

________________________________________________________________________________________

mupad [B]  time = 4.30, size = 151, normalized size = 0.90 \begin {gather*} -\frac {a^3\,\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4}}{15\,x^{15}\,\left (b\,x^2+a\right )}-\frac {b^3\,\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4}}{9\,x^9\,\left (b\,x^2+a\right )}-\frac {3\,a\,b^2\,\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4}}{11\,x^{11}\,\left (b\,x^2+a\right )}-\frac {3\,a^2\,b\,\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4}}{13\,x^{13}\,\left (b\,x^2+a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)/x^16,x)

[Out]

- (a^3*(a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2))/(15*x^15*(a + b*x^2)) - (b^3*(a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2))/(9*x
^9*(a + b*x^2)) - (3*a*b^2*(a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2))/(11*x^11*(a + b*x^2)) - (3*a^2*b*(a^2 + b^2*x^4
+ 2*a*b*x^2)^(1/2))/(13*x^13*(a + b*x^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}{x^{16}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**4+2*a*b*x**2+a**2)**(3/2)/x**16,x)

[Out]

Integral(((a + b*x**2)**2)**(3/2)/x**16, x)

________________________________________________________________________________________